Anchors of irreducible characters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the irreducible characters of Camina triples

The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N)  and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.  

متن کامل

On Squares of Irreducible Characters

We study the finite groups G with a faithful irreducible character whose square is a linear combination of algebraically conjugate irreducible characters of G. In conclusion, we offer another proof of one theorem of Isaacs-Zisser. There are a few papers treating the finite groups possessing an irreducible character whose powers are linear combinations of appropriate irreducible characters, for ...

متن کامل

Remarks on Computing Irreducible Characters

0.1. Let G be a connected reductive algebraic group defined over a finite field Fq and let G(Fq) be the finite group of all Fq-rational points of G. We would like to present here a strategy for computing the character table of G(Fq) , under the assumption that p, the characteristic of Fq , is sufficiently large. We can assume that G has a simply connected derived group. Indeed, in the general c...

متن کامل

On Degrees of Irreducible Brauer Characters

Based on a large amount of examples, which we have checked so far, we conjecture that |G|p′ ≤ ∑ φ φ(1) 2 where p is a prime and the sum runs through the set of irreducible Brauer characters in characteristic p of the finite group G. We prove the conjecture simultaneously for p-solvable groups and groups of Lie type in the defining characteristic. In non-defining characteristics we give asymptot...

متن کامل

Irreducible Symmetric Group Characters of Rectangular Shape

where χ(1) denotes the dimension of the character χ and (n)k = n(n − 1) · · · (n − k + 1). Thus [8, (7.6)(ii)][12, p. 349] χ(1) is the number f of standard Young tableaux of shape λ. Identify λ with its diagram {(i, j) : 1 ≤ j ≤ λi}, and regard the points (i, j) ∈ λ as squares (forming the Young diagram of λ). We write diagrams in “English notation,” with the first coordinate increasing from to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2015.11.034